Prior Somatic Stimulation Improves Performance of Acquired Motor Skill by Facilitating Functional Connectivity in Cortico-Subcortical Motor Circuits
نویسندگان
چکیده
Once people have a well-trained motor skill, their performance becomes stabilized and achieving substantial improvement is difficult. Recently, we have shown that even a plateaued hand motor skill can be upgraded with short-period electrical stimulation to the hand prior to the task. Here, we identify the neuronal substrates underlying the improvement of the plateaued skill by examining the enhanced functional connectivity in the sensory-motor regions that are associated with motor learning. We measured brain activity using functional magnetic resonance imaging and performed psychophysiological interaction analysis. We recruited seven right-handed very-well trained participants, whose motor performance of continuously rotating two balls with their right hands became stabilized at higher performance levels. We prepared two experiments, in each of which they repeated an experimental run 16 times. In each run, they performed this cyclic rotation as many times as possible in 16 s. In the thenar-stimulation experiment, we applied 60-s stimulation to the thenar muscle before each of the 5th 12th runs, and the others were preceded by ineffective sham stimulation. In the control experiment, the sham was always provided. Thenar stimulation enabled the participants to perform the movements at higher cycles. In association with this performance improvement, we found enhanced activity couplings between the primary motor cortex and the sensorimotor territory of the putamen and between the cerebellum and the primary sensorimotor cortices, without any quantitative activity increase. Neither behavioral change nor these increased activity couplings were observed in the control. Thus, in contrast to the stable neuronal states in the cortico-subcortical motor circuits when the well-learned task is repeated at the later stages of motor skill learning, plastic changes in the motor circuits seem to be required when the plateaued skill is upgraded, and the stimulation may entail a state of readiness for the plastic change that allows subsequent performance improvement.
منابع مشابه
Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation on Motor Functions in Patients with Subcortical Stroke
Background: Motor function impairment occurs in approximately two-thirds of patients with subcortical stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique for modulating cortical excitability. Objectives: The present study was designed for assessing the efficacy of high-frequency rTMS (5 Hz) on ipsilesional primary motor cortex in patients with subcortical stro...
متن کاملAberrant cortico-subcortical functional connectivity among women with poor motor control: toward uncovering the substrate of hyperkinetic perseveration.
OBJECTIVE Hyperkinetic perseveration (HKP) refers to perseverative repetition of rudimentary motor output. Although HKP is known to be associated with brain injuries and certain neurodegenerative disorders (primarily those involving the frontal lobes and the basal ganglia), an increased tendency to exhibit HKP is also commonly associated with apparently normal aging (i.e., in the absence of kno...
متن کاملBridging the gap between functional and anatomical features of cortico-cerebellar circuits using meta-analytic connectivity modeling.
Theories positing that the cerebellum contributes to cognitive as well as motor control are driven by two sources of information: (1) studies highlighting connections between the cerebellum and both prefrontal and motor territories, (2) functional neuroimaging studies demonstrating cerebellar activations evoked during the performance of both cognitive and motor tasks. However, almost no studies...
متن کاملFunctional Connectivity of the Dorsal Striatum in Female Musicians
The dorsal striatum (caudate/putamen) is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC) motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional netwo...
متن کاملResting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity
Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013